Coalescent: an open-science framework for importance sampling in coalescent theory

نویسندگان

  • Susanta Tewari
  • John L. Spouge
  • Claus Wilke
چکیده

Background. In coalescent theory, computer programs often use importance sampling to calculate likelihoods and other statistical quantities. An importance sampling scheme can exploit human intuition to improve statistical efficiency of computations, but unfortunately, in the absence of general computer frameworks on importance sampling, researchers often struggle to translate new sampling schemes computationally or benchmark against different schemes, in a manner that is reliable and maintainable. Moreover, most studies use computer programs lacking a convenient user interface or the flexibility to meet the current demands of open science. In particular, current computer frameworks can only evaluate the efficiency of a single importance sampling scheme or compare the efficiencies of different schemes in an ad hoc manner. Results. We have designed a general framework (http://coalescent.sourceforge.net; language: Java; License: GPLv3) for importance sampling that computes likelihoods under the standard neutral coalescent model of a single, well-mixed population of constant size over time following infinite sites model of mutation. The framework models the necessary core concepts, comes integrated with several data sets of varying size, implements the standard competing proposals, and integrates tightly with our previous framework for calculating exact probabilities. For a given dataset, it computes the likelihood and provides the maximum likelihood estimate of the mutation parameter. Well-known benchmarks in the coalescent literature validate the accuracy of the framework. The framework provides an intuitive user interface with minimal clutter. For performance, the framework switches automatically to modern multicore hardware, if available. It runs on three major platforms (Windows, Mac and Linux). Extensive tests and coverage make the framework reliable and maintainable. Conclusions. In coalescent theory, many studies of computational efficiency consider only effective sample size. Here, we evaluate proposals in the coalescent literature, to discover that the order of efficiency among the three importance sampling schemes changes when one considers running time as well as effective sample size. We also describe a computational technique called "just-in-time delegation" available to improve the trade-off between running time and precision by constructing improved importance sampling schemes from existing ones. Thus, our systems approach is a potential solution to the "2(8) programs problem" highlighted by Felsenstein, because it provides the flexibility to include or exclude various features of similar coalescent models or importance sampling schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Computation of Coalescent Likelihood under the Infinite Sites Model

Coalescent likelihood is the probability of observing the given population sequences under the coalescent model. Computation of coalescent likelihood under the infinite sites model is a classic problem in coalescent theory. Existing methods are based on either importance sampling or Markov chain Monte Carlo. In this paper, we develop a simple method that can compute the exact coalescent likelih...

متن کامل

Coalescent experiments I: Unlabeled n-coalescent and the site frequency spectrum

We derive the transition structure of a Markovian lumping of Kingman’s n-coalescent [1, 2]. Lumping a Markov chain is meant in the sense of [3, def. 6.3.1]. The lumped Markov process, referred as the unlabeled n-coalescent, is a continuous-time Markov chain on the set of all integer partitions of the sample size n. We derive the backwardtransition, forward-transition, state-specific, and sequen...

متن کامل

Scalable Statistical Methods for Ancestral Inference from Genomic Variation Data

Scalable Statistical Methods for Ancestral Inference from Genomic Variation Data by Andrew Hans Chan Doctor of Philosophy in Computer Science University of California, Berkeley Professor Yun S. Song, Chair Developments in DNA sequencing technology over the last few years have yielded unprecedented volumes of genetic data. The resulting datasets are indispensable for a variety of purposes, from ...

متن کامل

Stopping-time resampling and population genetic inference under coalescent models.

To extract full information from samples of DNA sequence data, it is necessary to use sophisticated model-based techniques such as importance sampling under the coalescent. However, these are limited in the size of datasets they can handle efficiently. Chen and Liu (2000) introduced the idea of stopping-time resampling and showed that it can dramatically improve the efficiency of importance sam...

متن کامل

Inference in Kingman's Coalescent with Particle Markov Chain Monte Carlo Method

We propose a new algorithm to do posterior sampling of Kingman’s coalescent, based upon the Particle Markov Chain Monte Carlo methodology. Specifically, the algorithm is an instantiation of the Particle Gibbs Sampling method, which alternately samples coalescent times conditioned on coalescent tree structures, and tree structures conditioned on coalescent times via the conditional Sequential Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015